Math 102

Krishanu Sankar

October 9, 2018

Goals Today

- Global maxima and minima of a function over an interval
- Introduction to Optimization (Unconstrained and Constrained)
- Determine the objective function: what quantity are we trying to optimize?
- Determine the variables: what quantities determine the objective function?
- Determine the constraints: what are the constraining relationships between the variables?

Optimization

- Largest possible volume of a cell given a fixed surface area
- Optimal tradeoff between studying math and studying chemistry given fixed time
- https:
//www. youtube.com/watch?v=czk4xgdhdY4

Global Maxima/minima

- The global maximum of $f(x)$ over an interval $[a, b]$ is the largest value that $f(x)$ achieves on that interval. The global minimum is defined analogously.

Global Maxima/minima

- The global maximum of $f(x)$ over an interval $[a, b]$ is the largest value that $f(x)$ achieves on that interval. The global minimum is defined analogously.
- The global maximum of $f(x)$ over $[a, b]$ is always one of
- A local maximum of $f(x)$, or
- $f(a)$ or $f(b)$.

Global Maxima/minima

- The global maximum of $f(x)$ over an interval $[a, b]$ is the largest value that $f(x)$ achieves on that interval. The global minimum is defined analogously.
- The global maximum of $f(x)$ over $[a, b]$ is always one of
- A local maximum of $f(x)$, or
- $f(a)$ or $f(b)$.
- The global maximum/minimum of $f(x)$ over the interval $[a, \infty$) (if it exists!) is either a local maximum/minimum of $f(x)$, or is $f(a)$.

Warmup

$$
\text { Let } f(x)=-x^{2}+3 x \text {. }
$$

Question: The global max/min of $f(x)$ on the interval $[3,5]$ occur at $x=$

Question: The global max/min of $f(x)$ on the interval $[1, \infty)$ occur at $x=$

Warmup

Let $f(x)=-x^{2}+3 x$.
Question: The global max/min of $f(x)$ on the interval $[3,5]$ occur at $x=3$ (max) and $x=5$ (min).

Question: The global max/min of $f(x)$ on the interval $[1, \infty)$ occur at $x=1.5$ (max) and DNE (min).

Example: Crossing a river

- Swimming speed $=1$ meter per second
- Running speed $=4$ meters per second

Variables: $x=$ distance run. Clearly doesn't make sense to have $x<0$ or $x>200$
Objective function: Time $=\frac{x}{4}+\frac{\sqrt{(200-x)^{2}+150^{2}}}{1}$

Bonus slide

We want to minimize the function
$f(x)=\frac{x}{4}+\sqrt{(200-x)^{2}+150^{2}}$ over the interval [0, 200].

- Find the CPs:

$$
\begin{gathered}
f^{\prime}(x)=\frac{1}{4}-\frac{200-x}{\sqrt{(200-x)^{2}+150^{2}}}=0 \\
\frac{1}{4}=\frac{200-x}{\sqrt{(200-x)^{2}+150^{2}}} \\
\sqrt{(200-x)^{2}+150^{2}}=4(200-x)
\end{gathered}
$$

Bonus slide

$$
\begin{gathered}
(200-x)^{2}+150^{2}=16(200-x)^{2} \\
150^{2}=15(200-x)^{2} \\
1500=(200-x)^{2} \\
x=200 \pm 10 \sqrt{15}
\end{gathered}
$$

Only $x=200-10 \sqrt{15}$ lies in the interval [0, 200].

Bonus slide

How do we know that $x=200-10 \sqrt{15}$ gives a minimum?

- Test the values $x=0,200,200-10 \sqrt{15}$.

$$
\begin{gathered}
f(0)=\frac{0}{4}+\sqrt{200^{2}+150^{2}}=250 \\
f(200)=\frac{200}{4}+\sqrt{150^{2}}=200 \\
f(200-10 \sqrt{15})=\frac{200-10 \sqrt{15}}{4}+\sqrt{1500+150^{2}} \\
=50-\frac{5 \sqrt{15}}{2}+40 \sqrt{15}=50+\frac{75 \sqrt{15}}{2}
\end{gathered}
$$

Since $\sqrt{15}<4,50+\frac{75 \sqrt{15}}{2}<50+\frac{300}{2}=200$.

Example: Rectangle perimeter

Question: Given that a rectangle has a known area of 1600 square meters, but unknown length and width, what is the minimal possible perimeter?

- Variables: L and W
- Objective function: $P=2 L+2 W$ Constraint: $L W=1600$

- Variables: L and W
- Objective function: $P=2 L+2 W$
- Constraint: $L W=1600$

Thus, $W=\frac{1600}{L}$, and so $P=2 L+\frac{3200}{L}$.

- Variables: L and W
- Objective function: $P=2 L+2 W$ Constraint: $L W=1600$

Thus, $W=\frac{1600}{L}$, and so $P=2 L+\frac{3200}{L}$. P is minimized when $L=40$.

Recap

- Global maxima and minima of a function over an interval
- Introduction to Optimization (Unconstrained and Constrained)
- Determine the objective function: what quantity are we trying to optimize?
- Determine the variables: what quantities determine the objective function?
- Determine the constraints: what are the constraining relationships between the variables?

