Math 102

Krishanu Sankar

October 9, 2018

Goals Today

- Global maxima and minima of a function over an interval
- Introduction to Optimization (Unconstrained and Constrained)
 - Determine the objective function: what quantity are we trying to optimize?
 - Determine the variables: what quantities determine the objective function?
 - Determine the constraints: what are the constraining relationships between the variables?

Optimization

- Largest possible volume of a cell given a fixed surface area
- Optimal tradeoff between studying math and studying chemistry given fixed time

https:

//www.youtube.com/watch?v=czk4xgdhdY4

Global Maxima/minima

The global maximum of f(x) over an interval [a, b] is the largest value that f(x) achieves on that interval. The global minimum is defined analogously.

Global Maxima/minima

- The global maximum of f(x) over an interval [a, b] is the largest value that f(x) achieves on that interval. The global minimum is defined analogously.
- The global maximum of f(x) over [a, b] is always one of
 - A local maximum of f(x), or
 - f(a) or f(b).

Global Maxima/minima

- The global maximum of f(x) over an interval [a, b] is the largest value that f(x) achieves on that interval. The global minimum is defined analogously.
- ► The global maximum of *f*(*x*) over [*a*, *b*] is always one of
 - A local maximum of f(x), or
 - f(a) or f(b).
- ► The global maximum/minimum of f(x) over the interval [a,∞) (if it exists!) is either a local maximum/minimum of f(x), or is f(a).

Warmup

Let $f(x) = -x^2 + 3x$.

Question: The global max/min of f(x) on the interval [3,5] occur at x =

Question: The global max/min of f(x) on the interval $[1, \infty)$ occur at x =

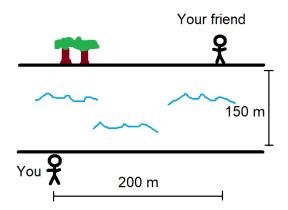
Warmup

Let
$$f(x) = -x^2 + 3x$$
.

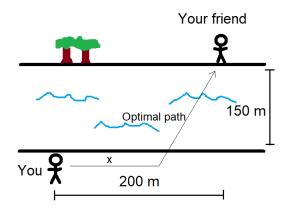
Question: The global max/min of f(x) on the interval [3,5] occur at x = 3 (max) and x = 5 (min).

Question: The global max/min of f(x) on the interval $[1, \infty)$ occur at x = 1.5 (max) and DNE (min).

Example: Crossing a river



Swimming speed = 1 meter per second
Running speed = 4 meters per second



Variables: x = distance run. Clearly doesn't make sense to have x < 0 or x > 200

Objective function: Time $=\frac{x}{4} + \frac{\sqrt{(200-x)^2+150^2}}{1}$

Bonus slide

We want to minimize the function $f(x) = \frac{x}{4} + \sqrt{(200 - x)^2 + 150^2}$ over the interval [0, 200].

Find the CPs:

$$f'(x) = \frac{1}{4} - \frac{200 - x}{\sqrt{(200 - x)^2 + 150^2}} = 0$$
$$\frac{1}{4} = \frac{200 - x}{\sqrt{(200 - x)^2 + 150^2}}$$
$$\sqrt{(200 - x)^2 + 150^2} = 4(200 - x)$$

Bonus slide

$$\begin{array}{l} (200-x)^2+150^2=16(200-x)^2\\ 150^2=15(200-x)^2\\ 1500=(200-x)^2\\ x=200\pm10\sqrt{15}\\ \end{array}$$
 Only $\boxed{x=200-10\sqrt{15}}$ lies in the interval $[0,200]. \end{array}$

Bonus slide

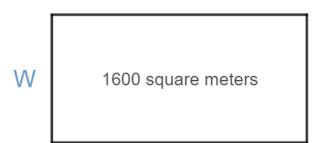
How do we know that $x = 200 - 10\sqrt{15}$ gives a minimum?

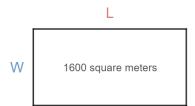
• Test the values $x = 0,200,200 - 10\sqrt{15}$.

$$\begin{split} f(0) &= \frac{0}{4} + \sqrt{200^2 + 150^2} = 250 \\ f(200) &= \frac{200}{4} + \sqrt{150^2} = 200 \\ f(200 - 10\sqrt{15}) &= \frac{200 - 10\sqrt{15}}{4} + \sqrt{1500 + 150^2} \\ &= 50 - \frac{5\sqrt{15}}{2} + 40\sqrt{15} = 50 + \frac{75\sqrt{15}}{2} \\ \mathsf{Since} \ \sqrt{15} < 4, \ 50 + \frac{75\sqrt{15}}{2} < 50 + \frac{300}{2} = 200. \end{split}$$

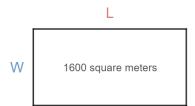
Example: Rectangle perimeter

Question: Given that a rectangle has a known area of 1600 square meters, but unknown length and width, what is the minimal possible perimeter?



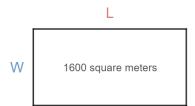


- ► Variables: *L* and *W*
- **• Objective function:** P = 2L + 2W
- Constraint: LW = 1600



- ► Variables: *L* and *W*
- **• Objective function:** P = 2L + 2W
- **Constraint:** LW = 1600

Thus,
$$W = \frac{1600}{L}$$
, and so $P = 2L + \frac{3200}{L}$.



- ► Variables: *L* and *W*
- **• Objective function:** P = 2L + 2W
- **Constraint:** LW = 1600

Thus, $W = \frac{1600}{L}$, and so $P = 2L + \frac{3200}{L}$. P is minimized when L = 40.

Recap

- Global maxima and minima of a function over an interval
- Introduction to Optimization (Unconstrained and Constrained)
 - Determine the objective function: what quantity are we trying to optimize?
 - Determine the variables: what quantities determine the objective function?
 - Determine the constraints: what are the constraining relationships between the variables?